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Abstract

We test competing hypotheses of relationships among Aroids (Araceae) and duckweeds (Lemnaceae) using sequences of the
trnL—trnF spacer region of the chloroplast genome. Included in the analysis were 22 aroid genera including Pistia and five genera of
Lemnaceae including the recently segregated genus Landoltia. Aponogeton was used as an outgroup to root the tree. A data set
of 522 aligned nucleotides yielded maximum parsimony and maximum likelihood trees similar to those previously derived from
restriction site data. Pistia and the Lemnaceae are placed in two separate and well-supported clades, suggesting at least two in-
dependent origins of the floating aquatic growth form within the aroid clade. Within the Lemnaceae there is only partial support for
the paradigm of sequential morphological reduction, given that Wolffia is sister to Wolffiella+ Lemna. As in the results of the re-
striction site analysis, pantropical Pistia is placed with Colocasia and Typhonium of southeastern Asia, indicative of Old World
affinities. Branch lengths leading to duckweed terminal taxa are much longer relative to other ingroup taxa (including Pistia),
evidently as a result of higher rates of nucleotide substitutions and insertion/deletion events. Morphological reduction within the

duckweeds roughly correlates with accelerated chloroplast genome evolution.

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Floating aquatic duckweeds of the monocot family
Lemnaceae are clearly the most highly reduced (de-
rived?) of all flowering plants. Although the Lemnaceae
have long been associated with the Araceae (see Les
et al., 2002 for historical review), relationships between
the families remain uncertain (Mayo et al., 1997). Cla-
distic analyses using either morphological characters
(Stockey et al., 1997) or molecular characters (Davis,
1995; Duvall et al., 1994; French et al., 1995) all support
the hypothesis that the Lemnaceae are closely related to
or embedded within the Araceae. However, the results
of various studies differ in the phylogenetic position of
the Lemnaceae and their relationship to other aroid
genera (Fig. 1). Traditional morphological studies have
commonly indicated a close relationship between the
floating aroid Pistia and the duckweeds (e.g., Arber,
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1920a,b; Engler, 1877; Hegelmaier, 1868; Mayo et al.,
1997; Sculthorpe, 1967). This single origin of a floating
aquatic habit is supported by published molecular
analyses using the chloroplast gene rbcL (Duvall et al.,
1993; Les et al., 1997) and morphological analyses using
a combination of living and fossil species (Stockey et al.,
1997; Fig. 1a). Indeed, extinct floating aroids and lem-
noids provide excellent evidence for a long history of the
floating aquatic habit among these plants, with the
Upper Cretaceous Pistia corrugata Lesquereux (Fig. 2a)
showing marked similarities to the living Pistia stratiotes
L. (Fig. 2d). The smaller, morphologically reduced
Limnobiophyllum scutatum (Dawson) Krassilov (Fig. 2b)
and Limnobiophyllum expansum (Heer) Kvaeek occur in
Paleocene and Miocene deposits respectively, forming a
transformational series leading to the largest living
duckweed Spirodela Schleiden (Fig. 2¢). Continued re-
duction through Lemna L. and Wolffiella Hegelmaier, to
Wolffia Horkel ex Schleiden (Fig. 2e) is considered to
reflect increasing levels of specialization (Les et al., 1997;
Stockey et al., 1997).
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Fig. 1. Hypotheses of relationships among Lemnaceae, Pistia, and other aroids implied by previously published results of various authors.
(a) Hypothesis of Pistia as the sister to Lemnaceae. (b) Hypothesis of much more distant relationship between Pistia and Lemnaceae.

Fig. 2. Floating aquatic aroids and lemnoids showing variation in size and complexity among fossil and living species. Species that consist of plants
with stems, leaves and roots are connected by stolons (s), while species with more reduced/derived morphology consist of interconnected fronds. (a)
Pistia corrugata from 75 million year old Cretaceous deposits of Alberta, Canada. (b) Limnobiophyllum scutatum from 62 million year old Paleocene
deposits of Alberta, Canada. (c) Living Spirodela intermedia. (d) Living Pistia strateoides. (e) Living Wolffia brasiliensis.

By contrast, other molecular analyses, namely those
focusing on chloroplast restriction site data, remove
Pistia and the Lemnaceae to distantly related clades and
embed both within the Araceae (e.g., French et al., 1995;
Mayo et al.,, 1997; Renner and Weerasooriya, 2002;
Fig. 1b). Interestingly, the most current anatomical and
palynological evidence also refutes a close relationship
between the Lemnaceae and Pistia, suggesting instead a
relatively primitive position for the Lemnaceae imme-
diately above the basal Oronticae and sister to the
remaining Araceae (Bogner, personal communication).

At least in part, these discrepancies of relationship
and phylogenetic position of Lemnaceae within a
broader aroid assemblage may be due to low sampling
of aroid and lemnoid genera. Previously published

studies supporting a close relationship of Lemnaceae
and Pistia have included too few taxa to potentially
overcome exemplar effects (i.e., too few DNA sequences
used to represent major, divergent evolutionary lineages;
Sytsma and Baum, 1996). In addition, the GenBank
sequence for Pistia is inexplicably divergent at irregular
points across its length, both in comparison to Lemna-
ceae and to other aroid genera. Its substantial diver-
gence may be largely artifactual, and it is plausible that
the apparent sister relationship of this particular Pistia
sequence and the sole rbcL Lemnaceae representative
in previous studies is due to “long-branch attraction”
rather than a true evolutionary relationship.

To help distinguish between the competing hypothe-
ses of affinities and phylogenetic position for the
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Lemnaceae, we have sequenced a range of Araceae and
Lemnaceae across both families for a moderately fast-
evolving chloroplast spacer. Sequences for the trnL—trnF
intergenic spacer were obtained for 35 aroid/lemnoid
ingroup samples and one outgroup (Aponogeton dist-
achyus, Aponogetonaceae, Alismatales), the latter fam-
ily revealed by higher-level studies as one of the nearest
sisters to the Araceae/Lemnaceae clade. Non-lemnoid
ingroup taxa were selected from clades evenly distrib-
uted across the Araceae s. str. (Mayo et al., 1997) and
comprising 11 tribes, as represented in the strict con-
sensus tree from chloroplast restriction site analysis
(French et al., 1995). Additional species of the very large
genus Anthurium were included for species-level com-
parison of divergence. One or two species of four long-
established genera, as well as Landoltia punctata
(recently segregated from Spirodela by Les and Craw-
ford, 1999), were included for the Lemnaceae.

Most samples were generously provided from the
extensive living collections of Josef Bogner at the Mu-
nich Botanical Gardens and Thomas Croat at the Mis-
souri Botanical Garden. The remainder were collected at
the Ohio University greenhouse, from wild populations
near Athens, Ohio or southeastern Missouri, or on the
campus of the Universidad Nacional Auténoma de
Meéxico in Mexico City, Mexico.

2. Materials and methods
2.1. DNA extraction

Samples of Lemnaceae were examined with a binoc-
ular dissecting microscope to conform single-species
composition prior to DNA extraction, and identifica-
tions were made using Landolt (1986) and comparisons
with specimens annotated by Landolt at the Missouri
Botanical Garden herbarium. Identifications for nearly
all aroids were those of J. Bogner and T. Croat; the
remaining samples were identified by comparison with
verified specimens annotated by these specialists. DNA
extractions of the 36 samples were prepared from freshly
preserved leaf tissue desiccated in silica gel (Table 1).
Extractions were made using a modified SDS “mini-
extraction” protocol (Edwards et al., 1991) followed by
the chloroform-isoamyl alcohol extraction, alcohol
precipitations and acetate salt rinses used in the stan-
dard CTAB protocol (Doyle and Doyle, 1987; Smith
et al., 1991), scaled down to 1.5 ml microfuge tubes.

2.2. Amplification and sequencing of trnl—trnF spacer

The polymerase chain reaction (PCR, Mullis et al.,
1986) was used to amplify the trnL—trnF spacer for se-
quencing using primers “E” and “F” (Taberlet et al.,
1991). Reaction constituents and thermal cycler pro-

gram followed those used for the Internal Transcribed
Spacer ntDNA region by Ballard et al. (1999), but em-
ploying 35 rather than 30 cycles during PCR. Successful
reactions were cleaned using a PCR Preps kit (Promega)
and quantified with a GeneQuant II spectrophotometer
(Pharmacia Biotech). Samples were cycle-sequenced
with dye-terminator chemistry (Applied Biosystems)
using primer “E.” After ethanol-sodium acetate pre-
cipitation, products were analyzed on an ABI 310 cap-
illary DNA Analyzer at Ohio University. Sequences
have been submitted to GenBank and accession num-
bers are provided in Table 1. The aligned data set and
trees illustrated in Figs. 3 and 4 have been submitted to
TreeBASE.

2.3. Phylogenetic analysis and hypothesis testing

Sequencer trace files of frnl—trnF spacer sequences
were edited in Sequencher 3.0 software (GeneCodes),
then aligned using CLUSTAL X (Jeanmougin et al.,
1998) with a range of incremental gap penalties from 5
to 30 specified in separate submissions. The resulting
alignments proved to be identical or essentially so.
Following minor manual adjustments per the strategy of
Bogler and Simpson (1996), each aligned data set was
subjected to preliminary maximum parsimony analysis
in PAUP*, version 4.0b10 (Swofford, 2002). The data set
providing the lowest number of steps and the highest
consistency index (CI, Kluge and Farris, 1969) and
retention index (RI, Archie, 1989; Farris, 1989) was
selected for further analysis.

Phylogenetic analysis of the accepted aligned data
matrix focused initially on maximum parsimony, com-
paring results from PAUP* on the one hand with those
from Winclada beta 0.9.9 (Nixon, 1999, 2002) and Nona
(Goloboff, 1999) on the other. Parsimony analysis in
PAUP* was conducted on both the accepted aligned
data set using nucleotide substitutions alone, and on a
second data set that included binary gap codes assigned
automatically by PaupGap (Cox, 1997), both with gaps
as missing data. Analysis began with 100,000 random-
addition replicates and NNI-swapping, saving one tree
from each replicate, and ended with TBR-swapping on
each replicate and saving all most-parsimonious trees.
Bootstrap support (Felsenstein, 1985; Sanderson, 1989)
in PAUP* was evaluated from 10,000 random-addition
replicates and TBR-swapping, saving a single tree from
each replicate. Parsimony jackknife analysis in PAUP*,
emulating JAC resampling with 36.8% nominal deletion
and “‘collapse =amb” under the condense trees option,
also used 10,000 random-addition replicates and TBR-
swapping, holding one tree per replicate. The accepted
aligned data matrix was also subjected to maximum
likelihood. Likelihood parameters were established us-
ing ModelTest version 3.06, and these were utilized in
subsequent analysis of the entire data set with PAUP*.
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Fig. 3. Strict consensus of 409 most-parsimonious trees of 487 steps, based on maximum parsimony analysis of chloroplast DNA sequences from the
trnL—trnF intergenic spacer for 29 Araceae, 6 Lemnaceae and 1 Aponogetonaceae. Bootstrap values above horizontal branches, nodes supported
by 51% or greater jackknife values are indicated by black dots. Lemnaceae are capitalized and denoted by a bracket; Pistia is in bold face and denoted

by an arrow.

Sequence divergence values between outgroup and in-
group and among various ingroup combinations were
calculated within PAUP* using Jukes-Cantor distances.
All ModelTest and PAUP* analyses and calculations
were performed on an iMac Macintosh personal
computer.

The heuristic and parsimony ratchet (“island hop-
ping”’) methods were employed with Nona spawned
from within Winclada on the accepted aligned data set
excluding gap codes. Heuristic analysis used 100 repli-
cations with 10 maximum trees kept and one starting
tree per rep; parsimony ratchet invoked 100 passes of
10,000 iterations each, 10% of characters (52) perturbed,
one tree held from each iteration, random constraint
level =10, and amb = poly—. Both bootstrap and jack-
knife analyses used 100 replications with 10 search reps,
one starting tree per rep, and “don’t do max (TBR).”
Winclada and Nona were performed on a NetData
IBM-compatible personal computer.

3. Results

PAUP* generated 216 most-parsimonious trees of
518 steps, whereas Winclada and Nona yielded 409
most-parsimonious trees of 487 steps, with CI=0.72
and RI=0.69, suggesting all trees were derived from a
single island. Results from both software algorithms
were highly congruent, with results from Winclada and
Nona giving a more highly resolved phylogeny (Fig. 2).
Results from maximum likelihood analysis of the un-
constrained data set were also essentially identical to the
Winclada/Nona phylogeny. Therefore, our report on
relationships focuses on the parsimony results from the
Winclada/Nona program.

In the ingroup, the orontioid and gymnostachydoid
genera are placed as sisters in a moderately well sup-
ported basal-most “proto-aroid” clade that is sister to
the remainder of the aroids plus Lemnaceae (Fig. 3).
The genera Callopsis and Asterostigma are placed at the
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Fig. 4. Phylogram of strict consensus tree, with branch lengths proportional to the number of nucleotide substitutions. Lemnaceae are capitalized and
denoted by a bracket; Pistia is in bold face and denoted by an arrow. Note that nucleotide substitutions represented by individual branch lengths
roughly correlate with morphological reduction in the Lemnaceae (Spirodela > Landoltia >Wolffiella >Lemna > Wolffia), with fewer substitutions in

Pistia and related Araceae.

next two higher nodes, but in positions that receive no
bootstrap or jackknife support. The remainder of the
aroid/lemnoid assemblage forms a polytomy, wherein
are embedded three moderately to very strongly sup-
ported monophyletic lineages: (1) the Lemnaceae, (2)
Amydrium + Anthurium, and (3) a third taxonomically
heterogeneous clade that includes Pistia in one of the
most derived positions. High bootstrap and jackknife
values across most nodes in the clades containing
Lemnaceae and Pistia preclude any very close relation-
ship between the latter two taxa (Fig. 3). Within the
Lemnaceae clade, Spirodela polyrhiza is basal-most as
previously suggested by other data sets, and sister to the
rest of the family. The recently segregated monotypic
genus Landoltia is above Spirodela and sister to the rest
of the Lemnaceae, echoing the results of Les et al.
(1997). At successively higher nodes in the clade are
Wolffia brasiliensis, Wolffiella gladiata, and two Lemna
species (i.e., L. minor+ L. gibba). Generally, relation-
ships throughout the Lemnaceae receive moderately to
very strong bootstrap and jackknife support. Ranges
of sequence divergence values are presented in Table 2
for outgroup vs. ingroup, “Proto-aroids” vs. aroids/

lemnoids, aroids vs. lemnoids, within aroids s. str. and
within lemnoids.

4. Discussion
4.1. Relationship of Lemnaceae and Pistia

Results of phylogenetic analysis using chloroplast
trnL—trnF sequences reject the hypothesis set forth by
traditional morphological evidence published rbcL
sequences that Pistia is the sister to, or is very closely
related to, the Lemnaceae. Our results from trnL—trnF
sequences are in full agreement, however, with results of
chloroplast restriction site variation (French et al., 1995)
and with other, more intensive studies of the clade
containing Pistia using trnlL—trnF sequences by Renner
and Weerasooriya (2002). These cumulative results
support the concept of at least two independent origins
of a floating aquatic habit in extant members of the
aroid/lemnoid lineage. Recently studied Cretaceous
(Fig. 2a) and Tertiary (Fig. 2b) fossils of floating aquatic
aroids and lemnoids do not conform in venation and
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Table 2

Sequence divergence values for trnlL—trnF sequences of Aponogetonaceae, Araceae, and Lemnaceae, based on Jukes-Cantor distances

Groups

Range (%) and taxa compared

Outgroup (Aponogeton) vs. ingroup
“Proto-Aroids” vs. aroids/lemnoids

Aroids sensu lato vs. lemnoids

Within Aroids sensu stricto (minus lemnoids)
Within lemnoids

24.7-57.6 (Gymnostachys; Wolffiella)

14.0-33.3 (Symplocarpus—Nephthytis; Symplocarpus—Wolffia)
2.6-45.9 (Culcasia—Zamioculcas; Callopsis—Lemna gibba)
2.6-11.5 (Culcasia—Zamioculcas; Anthurium ravenii—Pistia)
8.8-47.2 (Lemna minor—L. gibba; Lemna gibba—Wollffia)

anatomical features to extant floating aquatic morpho-
types and are probably not related to them. This raises
the probability of three or four independent origins of
the floating aquatic habit within the broader aroid/
lemniod assemblage (Johnson et al., 1999; Stockey et al.,
1997).

4.2. Relative sequence divergence in Lemnaceae

In the phylogram depicting divergence in nucleotide
substitutions from the Winclada strict consensus tree
(Fig. 4), molecular differentiation in the chloroplast
spacer roughly parallels the degree of morphological re-
duction in the Lemnaceae as a whole. In contrast, how-
ever, the sequence for Pistia is hardly more differentiated
than other related aroid genera. The very long branch
lengths in the Lemnaceae suggest a heightened rate of
chloroplast sequence evolution relative to other aroids
sensu lato. This apparent acceleration of chloroplast
evolution should be examined and tested using other
chloroplast gene regions, and nuclear gene regions as well.

4.3. Morphological reduction vs. phylogenetic position in
the Lemnaceae

Within the Lemnaceae clade, Spirodela (the basal-
most taxon) shows less molecular divergence than the
others, while Wolffia is the most divergent (Fig. 4).
Nevertheless, the cladistic placement of genera does not
conform precisely to the simple pattern of morphologi-
cal simplification from Spirodela, to Lemna, to Wolffi-
ella, and then to Wolffia. The relationships of Wolffia,
Wolffiella and Lemna contradict those proposed by the
traditional hypothesis of progressive morphological re-
duction. It also runs counter to the recent strongly
supported results of Les et al. (2002) based on four other
chloroplast regions, but no evidence was presented by
the authors on lemnoid/aroid relationships, and the
phylogenies were ultimately rooted with Spirodela. 1t is
possible that the addition of more species of polytypic
genera of Lemnaceae and more genera of Araceae
would rearrange the topology within this lineage. Evi-
dence from other gene regions, including the much less
variable trnL intron, would also be valuable.

The present data set convincingly rejects the long-
held hypothesis of a close relationship between Pistia
and the Lemnaceae, supports the phylogenetic place-

ment of the segregate genus Landoltia between Spirodela
and other Lemnaceae, and largely supports the rela-
tionships of aroid genera indicated by prior studies. Our
results also suggest an acceleration of chloroplast evo-
lution in the Lemnaceae that is generally correlated with
morphological reduction, a finding which bears further
investigation and correlation with substitution rates in
variable nuclear gene regions.
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